深圳大横梁

    深圳大横梁

  • 480
  • 产品价格:100.00 元/个
  • 发货地址:河南焦作武陟县 包装说明:不限
  • 产品数量:9999.00 个产品规格:不限
  • 信息编号:153595722公司编号:14528612
  • 班经理 微信 151883599..
  • 进入店铺 在线咨询 QQ咨询 在线询价
    相关产品:


河南亚兴精锻股份有限公司

品牌:亚兴适用机械:矿用刮板输送机类型:矿用材质:可定制工艺:锻打
一种大负角敞口零件成形工艺的研究
本文对一种大负角敞口零件成形工艺进行研究,讨论了拉深成形、管式内高压成形和弯曲胀形三种工艺方法在典型零件上的应用。通过讨论终采用弯曲胀形工艺方法对此典型零件进行CAE分析和零件试制,试制结果满足预定要求。弯曲胀形工艺可作为该典型零件和其他类似零件的成形工艺。
随着板材成形技术的发展,许多特种成形方式已经实现产业化。充液成形就是其中的一个代表工艺。充液成形按照成形方式可分为主动式充液成形(充液胀形)和被动式充液成形(充液拉深)。本文所介绍的零件采用的是弯曲胀形工艺,弯曲胀形工艺是主动式充液成形的一种,对成形深度大、带负角的敞口零件具有*特的优势。下面就分别从零件和材料简介、工艺方法研究、零件试制等方面进行介绍。
零件和材料简介
零件外形如图1所示,零件壁厚1.2mm,外形尺寸约为217mm×208mm×185mm。零件近似为两端没有底的3/5圆筒件,负角约15°。该零件材料为6A02铝合金,6A02是铝镁硅系可热处理强化的铝合金,耐腐蚀性较好,易于点焊及氢原子焊。材料在退火状态下拥有较高的塑性,淬火后拥有中等强度和塑性,但淬火后胀形易产生橘皮。该材料退火状态下力学性能参数详见表1。
工艺方法研究
仔细分析零件的形状特点,根据形状特点来研究采用何种成形工艺。该零件从轴向投影上看存在较大负角,如图2所示,红圈圈出部分即为负角部分,这部分是无法通过拉深成形出来的,且拉深深度很大,零件冲压方向的高度约185mm,再加上补充高度,拉深高度将达到220mm,近似拉深比约为3,拉深时零件会产生破裂。
该零件从周向投影看也存在负角,如图3所示,红圈圈出部分即为负角部分,负角较小,可以采用充液拉深成形出来,但是拉深深度是图2所示冲压方向拉深深度的1.5倍,拉深比达到了4,拉深不到一半就会破裂。
pagenumber_ebook=37,pagenumber_book=44
图1 零件外形
pagenumber_ebook=37,pagenumber_book=44
图2 零件轴向投影视图
通过对图2和图3的分析,可以得出该零件无法通过拉深这种工艺方法成形。
pagenumber_ebook=37,pagenumber_book=44
图3 零件周向投影视图
然后考虑一下管式内高压胀形,相对对拉深成形的判断,此零件能否采用内高压胀形的判断相对困难些。需要将零件补成封闭的管形零件,如图4所示,测量一下零件沿轴向的截面周长,约为687.4mm,小约为552.6mm,膨胀率达到了24.4%,且图4红圈处为局部凸起的小特征,后才能胀形到位,无法从其他地方补料,导致此处因减薄过大而产生橘皮或破裂,所以采用管式内高压胀形也是不可行的。
表1 6A02-退火态材料力学性能
pagenumber_ebook=37,pagenumber_book=44
pagenumber_ebook=38,pagenumber_book=45
图4 补充后的管形零件
后考虑采用弯曲胀形工艺。弯曲胀形工艺是主动式充液成形的一种,由弯曲和胀形两个工步组成,两个工步在一套模具中实现。首先对板料进行弯曲,弯曲胀形中的弯曲与传统弯曲工艺有一定的不同,由于胀形工艺的存在,弯曲后的零件产生的轻微褶皱均可以在胀形工步中展开,零件弯曲后的形状较传统弯曲工艺可以更加复杂。弯曲工步完成后,对弯曲后的零件进行充液胀形。由于高压液体充当胀形凸模,充液胀形较传统胀形拥有很多优势,其中的优势就是充液胀形可以胀形出带大负角且拥有较多复杂特征的零件,本文所研究的零件即属于这一类零件,这样的零件采用充液胀形工艺为合适。
图5所示为零件弯曲胀形工艺分析模型。模型由凸模、板料、凹模组成。
工艺动作顺序为:首先凸模下行,将板料弯曲,直至与凹模合死;然后高压液体从凸模打入到零件上表面,在高压液体的作用下零件胀形直至完全与凹模相贴合。
凸模的主要作用是对板料进行弯曲,凸模型面的形状决定了零件压弯后的形状。为了避免压弯后的零件产生破裂和严重的褶皱,要求凸模型面要有较大曲率且曲率变化不要过大。零件的凸模模型如图6所示。
pagenumber_ebook=38,pagenumber_book=45
图5 弯曲胀形工艺分析模型
pagenumber_ebook=38,pagenumber_book=45
图6 弯曲胀形凸模模型
凹模的主要作用是使零件胀形后贴在凹模型面上,从而成形出零件终形状。凹模型面的形状是根据零件终形状进行回弹补偿后的形状。此零件的凹模模型如图7所示。
工艺参数设置为:凸凹模摩擦系数0.125,板料网格1.2mm,凸模压力300t,液室压力10MPa,零件坯料尺寸800mm×500mm×1.2mm,弯曲高度228mm。采用CAE软件DYNAFORM对工艺进行分析,分析结果如图8所示。
从分析结果可以看出零件的减薄为11.2 %。零件材料为6A02-O,根据以往经验材料减薄不**过13%就不会产生橘皮或破裂。零件增厚为4.4%,不会产生褶皱。综上可以得出弯曲胀形工艺可行。
pagenumber_ebook=39,pagenumber_book=46
图7 弯曲胀形凹模模型
pagenumber_ebook=39,pagenumber_book=46
图8 零件减薄云图
零件试制
根据工艺分析结果对零件进行试制。制件过程如下:首先利用剪板机进行下料;打磨料边缘的毛刺;将料与凹模相贴的地方贴上塑料膜,防止零件表面划伤。然后将料对中放在凹模上;凸模下行合模到底后加压至300t;加液压到设定压力10MPa;后卸掉液室压力,卸掉设备合模压力,开模取件,完成制件。
pagenumber_ebook=39,pagenumber_book=46
图9 零件实物
终制造出的零件如图9所示。零件无起皱和破裂,轮廓度0.1mm,减薄约12%,与CAE软件分析结果相近且达到图纸要求。
结论
本文对一种大负角敞口零件的成形工艺进行了研究,讨论了拉深成形、管式内高压成形和弯曲胀形三种工艺方法在此典型零件上的应用。通过讨论终采用弯曲胀形工艺方法对此典型零件进行CAE分析和零件试制,终制造出的零件与CAE软件分析结果相近且达到图纸要求,证明了弯曲胀形工艺的可行性。而对于和本文所述零件相类似,拥有较大负角、零件轴向两端敞口且采用内高压成形胀形量很大的零件,可以采用本文所述弯曲胀形工艺作为零件成形工艺。

耙斗装岩机工作流程以及如何安全操作
耙斗装岩机是通过绞车的两个滚筒分别牵引主绳、绳尾使耙斗作往复运动把岩石扒进料槽,自料槽卸料口卸入矿车或箕斗而实现装岩作业。该机主要由固定楔、尾轮、耙斗、台车、绞车、操纵机构、导向轮、料槽(进料槽、中间槽、卸料槽)以及电气部分等组成。PB系列耙斗装岩机具有效率高、结构紧凑、应用范围广等特点。用于巷道掘进中配合矿车进行装岩。不仅可以在30°以下上山、下山巷道装岩,还可以进行掘进工序的平行作业,提高掘进速度,是实现巷道掘进机械化的主要机械设备之一。
为了防止在耙斗装岩机工作过程中的故障及事故的发生,机器在使用中应当严格遵守下列各项。电气维修:该设备以电为动力,在调整、检修或更换部件的工作开始之前,一定要确保切断了这台机器的所有电源。不要在机器上连接临时性电缆:如果触到高压电, 会造成严重的电击伤亡。在开动机器或操作任何控制装置前,操作人员必须事先阅读使用说明书,接受过如何正确操作机器的培训,并且完全熟悉所有控制装置。绝不可在仅靠液压支撑的部件下方工作。要安设足够的垫块支撑住载荷。

基于数值模拟的多楔带轮成形工艺研究
带轮作为一种重要的传动零件, 广泛应用于汽车、农机、水泵以及机床等机械设备传动中。带轮传统加工方法是采用铸、锻毛坯经切削加工而成,特点是浪费材料、生产效率低,产品具有精度低、笨重、转动惯量大等缺点。随着科学技术的发展进步,锻压及旋压技术以其节能节材、生产效率高、产品性能好、合格率高等优点,逐步推广应用到带轮的实际生产中。
带有凸台的多楔带轮的成形采取锻压与旋压相结合的成形工艺,而关于影响复杂结构多楔带轮成形质量的工艺参数,并没有明确的研究结果可以参考,故零件生产多结合有限元模拟和试验分析得到较为合适的参数,并在此基础上进行下一步的优化。根据材料的拉伸系数计算拉伸道次,结合冲压与锻造技术并采用有限元模拟软件DEFORM-3D进行数值模拟,分析成形过程中的应力、应变分布,为锻压成形多楔带轮的实际生产提供参考。
零件结构分析
带有凸台的多楔带轮结构如图1、图2所示,在旋压成形多楔齿之前需经过锻压成形内筒及凸台,其中凸台的成形难度较大。多楔带轮材料为DD13钢,基本力学性能如下:屈服强度为325MPa,密度为7.851g/cm3,弹性模量为205GPa,泊松比为0.29。
pagenumber_ebook=32,pagenumber_book=39
图1 多楔带轮结构图
pagenumber_ebook=32,pagenumber_book=39
图2 多楔带轮三维示意图
锻压成形工艺分析
根据体积不变原理,利用Pro/Engineer对多楔带轮体积进行计算,同时考虑预留加工余量,确定选用厚度为3mm,直径为206mm的板坯进行制坯。根据零件结构特点制定其锻压成形工艺路线:多道次拉深成形内筒→冷锻内筒→成形凸台→成形外圆弧。
内筒的多道次拉深成形工艺参数可查询冲压手册,为尽可能降低板坯减薄程度,设计三道次拉深成形内筒。通过查阅带凸缘拉深系数表并且结合生产实际,设计次拉深系数m1=0.52。由拉深系数计算公式:
pagenumber_ebook=33,pagenumber_book=40
其中,m为拉深系数,d为筒壁直径(mm),D为毛坯直径(mm)。计算得拉深直径为d1=107mm。后两道次拉深系数通过查询冲压手册并结合实际取m2=0.75,m3=0.77。故拉深直径分别为d2=80mm,d3=61.3mm。凹模圆角半径的计算公式如公式2所示:
pagenumber_ebook=33,pagenumber_book=40
其中,t 为坯料厚度(mm),D 为毛坯直径(mm),d为次拉深后筒壁直径(mm)。计算出*1次拉深中凹模圆角半径r1为14mm。由此可确定出后续拉深的凹模圆角半径为:r2=10mm,r3=7mm。由于内筒的成形属于变薄拉深,在经过三道次的拉深成形之后需经过冷镦工步对内筒筒壁增厚,故**道次的拉深高度需大于零件内筒的图纸尺寸,结合实际生产经验**道次拉深高度为h=24mm。
有限元模型建立
利用Pro/Engineer建立工件和各道次模具的三维模型,基于Deform-3D软件对多道次成形过程进行模拟分析,模拟采用“SI”公制单位,实际生产中材料为DD13,模拟选择材料库中与之相近的AISI-1008,坯料设置为塑性体,模具为刚性体,网格数量划分为150000个,并运用局部网格细化技术对坯料中间部分进行网格细化分。根据生产实际将摩擦因数设置为0.12,冲压速度为10mm/s,温度为20℃。图3所示为道次模具结构。
模拟结果分析
pagenumber_ebook=33,pagenumber_book=40
图3 *1道次拉深成形模具图
pagenumber_ebook=33,pagenumber_book=40
图4 至*三道次等效应变分布图
道次至*三道次有限元模拟的等效应变分布如图4所示。由图4(a)可见应变值较大处出现在内筒上下圆角处,即内筒上下圆角处变形程度较大。由于*二道次和*三道次的拉深高度不再变化,只在筒径上发生变化,故内筒的上侧圆角处应力较为集中,如图4(b)和图4(c)所示。*三道次筒径缩小到61.3mm,已近似于零件内筒直径61mm,此时内筒圆角及筒壁处壁厚发生了减薄。有限元模拟过程中未出现刮料、折叠缺陷,成形质量较好。
*四道次冷镦成形内筒。由于**道次的拉深使内筒筒壁及圆角处有所减薄,所以冷镦内筒的目的是增厚内筒筒壁及内筒上侧圆角以保证后续零件的成形质量。冷镦工艺是一种精密塑性成形技术,具有制品的机械性能好、生产率高和材料利用率高,特别适合于大批量生产等优点。由图5等效应变分布图可知,坯料内筒上圆角处应变值较大,因上圆角处圆角半径较大,在上模下压时坯料上圆角处与下模发生刮蹭,故出现应力集中的现象。从成形结果上看内筒筒壁及上侧圆角处金属充填饱满,满足后续加工要求。锻压成形过程中载荷出现在该道次,*四道次载荷图如图6所示,载荷为184吨。
pagenumber_ebook=34,pagenumber_book=41
图5 *四道次等效应变分布图
pagenumber_ebook=34,pagenumber_book=41
图6 *四道次载荷图
*五道次冲压预成形凸台以及轮辐与内筒相接的圆角,*六道次通过局部加载凸台处的上模具将凸台锻造至零件要求壁厚。通过锻造工艺使凸台处近净成形,减少机加工量;同时使金属材料向四周圆角处流动充填,提高产品表面光洁度和产品精度;并且可以改变金属组织,提高金属性能。*五道次至*六道次等效应变分布图如图7所示。成形过程中没有出现刮料、折叠等缺陷,但是从图7(b)可见凸台圆角处未充填饱满,这是由于凸台高度较高,冲压过程中减薄较严重引起的。
pagenumber_ebook=34,pagenumber_book=41
图7 *五道次至*六道次等效应变分布图
工艺优化
为解决成形方案中凸台圆角处充填不饱满的问题,考虑在成形凸台之前增加一道次,在内筒与轮辐之间作圆弧过渡,使坯料在凸台处聚料,后两道次按照成形方案的模具进行模拟。增加在凸台处聚料的道次及成形凸台后一道次的应变分布图如图8、图9所示。从成形结果看,凸台圆角处充填饱满,并且没有缺陷产生,成形效果较好,故该成形方案可以有效地解决凸台处减薄严重的问题。对比各道次等效应变值可以发现,随着道次的增加,材料内累积的应变值越来越大。
pagenumber_ebook=35,pagenumber_book=42
图8 增加道次的等效应变图
pagenumber_ebook=35,pagenumber_book=42
图9 凸台成形等效应变图
后一道次冲压成形外圆弧,该道次是为后续旋压成形轮缘及多楔齿做准备,等效应变图如图10所示。可见内筒上圆角和凸台处的应变值较大。终成形结果图如图11所示,成形效果良好。经过测量各处壁厚均达到后续加工要求。
试验验证
根据模拟分析结果,利用YQK-200型液压机进行试验,得到了合格的样件,多楔带轮锻压试件如图12所示。可以看出凸台部分成形质量较好,试件表面光洁度较高,未出现刮料、叠料等现象,经测量试件各关键部位处壁厚均达到后续加工要求。通过试验验证了该锻压工艺的正确性,可为实际生产提供指导。
结论
pagenumber_ebook=35,pagenumber_book=42
图10 终成形等效应变分布图
pagenumber_ebook=35,pagenumber_book=42
图11 终模拟结果图
pagenumber_ebook=35,pagenumber_book=42
图12 多楔带轮锻压试件
通过对双凸台多楔带轮锻压工艺方案进行深入分析,将冲压工艺和锻造工艺相结合,采用有限元软件Deform-3D对其成形工艺进行了数值模拟,分析了其成形过程中的应力应变分布,并进行了工艺试验验证,结论如下。
⑴双凸台多楔带轮结构较复杂,为控制内筒的减薄程度,内筒需采用多道次拉深成形,结合材料的拉深系数计算拉深道次,并计算各道次拉深的工艺参数。成形过程中应变主要集中在内筒上下圆角处,有轻微的减薄,后续通过冷镦工艺对筒壁及圆角处进行了有效增厚。
⑵凸台的成形需结合冲压技术和锻造技术,控制金属流动方向和速度,保证其成形质量。并通过工艺优化解决了凸台处壁厚减薄严重的问题。
⑶结合有限元模拟结果,通过试验验证了工艺的可行性,得到了符合要求的锻压件。

一体式全封闭高强度侧围加强板冲压工艺研究
导读:本文主要介绍了某车型不拼焊一体式全封闭侧围加强板,阐述了其在工艺、成本、生产稳定性、余废料利用等方面的优越性,既提升了整车材料利用率,又推动了一体式全封闭高强板侧围加强板的应用。
全封闭侧围加强板具有提升白车身材料利用率,车身安全强度高,尺寸稳定性高,匹配关系简单,生产效率高,车身轻的优点。经过几个车型的应用,虽然全封闭侧围加强板优点众多,但是其拼焊成本高、生产稳定性差的问题一直是困扰行业的难题。本文介绍的一体式全封闭侧围加强板,就很好的克服了这两个问题,具有一定的推广应用价值。
侧围加强板
传统的侧围加强板是由几个简单的高强板组合拼接而成,这种方式的侧围加强板总成尺寸稳定性较低,降低了汽车白车身的尺寸合格率。
整体封闭结构的侧围加强板(图1),相对于多个小零件点焊合成的侧围加强板总成具有整车减重、总成强度高、尺寸相对稳定、板料成本低、大幅度降低生产设备总吨位、减少工装数量和制造成本、降低生产成本、减少生产准备的匹配时间等优势。
pagenumber_ebook=40,pagenumber_book=47
图1 整体式拼焊加强板
整体式拼焊加强板在冲压成形过程中,**问题有两个:⑴激光拼焊焊缝端头引起的开裂问题,导致尺寸稳定性较差、废品率高。⑵生产中焊缝区域模具镀层磨损严重问题。而采用不拼焊的一体式封闭侧围加强板很好的了这两个问题。
产品特性
某车型侧围加强板采用不拼焊的一体式全封闭侧围加强板,如图2所示。
pagenumber_ebook=41,pagenumber_book=48
图2 一体式全封闭加强板
如图3所示,零件板材尺寸大小为1.6mm×1475mm×1830mm,重量为37.97kg,材质为TRIP600。
pagenumber_ebook=41,pagenumber_book=48
图3 零件板材示意图
工艺分析
该产品工序内容如图4所示。
pagenumber_ebook=41,pagenumber_book=48
图4 工序流程图
通过使用计算机模拟技术,识别产品开裂、起皱、回弹状态,对制件进行模拟分析,分析图如图5所示。
pagenumber_ebook=42,pagenumber_book=49
图5 CAE模拟分析效果图
余废料利用
一体式全封闭加强板在落料过程中,门洞废料尺寸较大,二次利用价值高,如表1所示。
表1 废料参数
pagenumber_ebook=42,pagenumber_book=49
如图6所示,根据门洞废料的大小和形状,确定落料时门洞废料的收集方式,通过与相同的材料、以及类似材料的制件进行对比,将侧围加强板、侧围内板综合评价,确定了门洞废料的利用方案:门洞废料收集用于侧围内板T02。此方案得到产品试验认可,单车降成本56.8元。
pagenumber_ebook=42,pagenumber_book=49
图6 废料利用
板料性能测试机分析
前期通过模拟分析,一体式全封闭侧围加强板,需采购材质为TRIP600、厚度为1.6mm、卷宽为1570mm的卷料,属于**宽类钢板。经过与国内外钢材生产厂家技术沟通后,目前正在试验阶段,在此项目调试阶段可以满足需求,如表2所示。
表2 模拟数据表及拉伸试验报告
pagenumber_ebook=43,pagenumber_book=50
pagenumber_ebook=43,pagenumber_book=50
成本分析
在产品设计初期,关于侧围加强板产品设计,采用何种方式,我们也进行了充分论证,关键点是设计为整体式还是拼焊式,为此我们进行了详细的分析和论证,主要涉及下面三个方案:⑴不等厚激光拼焊全封闭结构。⑵等厚激光拼焊全封闭结构。⑶一体式全封闭结构。
三种方案在材料利用率、钢加成本、拼焊成本、开卷落料成本、制件调试难度、预计冲压废品、模具国产化难易程度、尺寸精度控制、投资成本等方面进行对比,如表3所示。
表3 侧围加强板不同拼焊方式对比估算表
pagenumber_ebook=44,pagenumber_book=51
通过综合对比,一体式全封闭侧围加强板投资成本低于其他方案。
实施效果
该侧围加强板量产以来,各项性能指标均达到或**出项目目标。
⑴板料成本:单车板料成本165元,较以往车型降低33%。
⑵生产效率:预计生产效率5次/分,实际单批次生产效率达到5.63次/分,较预期提升近12.6%。
⑶生产废品率:预计废品率控制在0.3%以下,实际废品率在0.054%。
⑷余废料利用:达成预计效果,单车降成本56.8元。
总结
整体高强度封闭结构拼焊板冲压生产,存在成形激光拼焊焊缝端头引起的开裂问题,导致尺寸稳定性较差、废品率高,这些问题在已经量产的车型中不同程度地制约了整体结构侧围加强板优势的展现。不拼焊的一体式全封闭侧围加强板可以完避免这个问题,同时生产成本大幅降低。
结束语
⑴本项目通过对某车型侧围加强板的工艺结构进行优化,消除以往车型生产稳定性差的问题,同时通过余废料利用,提升了整车材料利用率,保证了侧围加强板的工艺先进性,大大的推动了一体式全封闭加强板的应用,为**宽TR类高强钢的应用提供了数据支撑。
⑵从长远来看,提高白车身尺寸精度、提高高强板应用率是个永恒不变的话题,产品质量决定了产品的竞争力。
⑶从内部来看,能够快速提高工艺人员生准的水平,提高工艺人员对零件、材料的掌握能力,提高工艺人员对产品质量的控制能力;从横向来看,行业内均能够进行推广,提高企业整体实力。
-/gbahbda/-

欢迎来到河南亚兴精锻股份有限公司网站,我公司位于华夏民族早期活动的中心区域之一、中国太较拳发源地—焦作市。 具体地址是河南焦作武陟县产业集聚区东区,联系人是班经理。
联系电话是0371-63563910, 主要经营刮板,异形螺栓,煤矿哑铃销,横梁,压板,河南煤机配件,锻造煤机配件,煤机配件厂家,刮煤棒,链轮,卡块,锻造机尾滚筒,破碎机锤头,锻造半滚筒,锻造销轨 。
单位注册资金未知。

  • 供应商更多产品推荐
  • 关于八方 | 招贤纳士八方币招商合作网站地图免费注册商业广告友情链接八方业务联系我们汇款方式投诉举报
    八方资源网联盟网站: 八方资源网国际站 粤ICP备10089450号-8 - 经营许可证编号:粤B2-20130562 软件企业认定:深R-2013-2017 软件产品登记:深DGY-2013-3594 著作权登记:2013SR134025
    互联网药品信息服务资格证书:(粤)--非经营性--2013--0176
    粤公网安备 44030602000281号
    Copyright © 2004 - 2024 b2b168.com All Rights Reserved